Bioclimatic Strategies

This experiment focuses on passive systems to increase comfort, experimenting different thermal inertia, lighting and ventilation scenarios. It allows for instance a better evaluation of bioclimatic strategies, such as implementation of rammed earth to increase the building’s thermal inertia.

The envelope, especially the glazing part and the side-effects induced on ventilation and lighting are of major influence on the building’s environmental impacts and user comfort (04-B3). To reduce the impacts of the façade itself, it is important to work on the materials involved in the construction. On the other side, to minimize the impacts related to the building’s consumption, it is important to improve ventilation and daylighting, which have clear influences on the façade’s design (04-B2).
Building Automation Systems (BAS) have been widely studied and have demonstrated a significant energy-saving potential in many situations. Nevertheless, advances in BAS technologies have typically been focused on primarily optimizing the trade-off between energy use and objective comfort and overlooked the importance of the occupants’ interactive experience with their environment.

Adopted approach for the SLB research program on bioclimatic strategies
A prototyped office space consisting of two rooms was designed and built. Comfort assessment and acceptability of the design solutions were investigated by a user survey. Participants answered a questionnaire about their comfort perception according to the operated ventilation, windows and shading (manually or automatically) in these rooms.
In order to improve the operating consumption by storing internal or external heat gains, thermal inertia is widely used as a bioclimatic strategy. Previous studies highlighted the difference between the thermal behaviour results obtained with tests on earth materials, like experiments in controlled climatic
chambers and real-world applications. In the literature, the potential of earth as a bioclimatic lever has not yet been investigated in real conditions.
An application of Compressed Earth Bricks (CEB) has been used as a case study to analyse the thermal behaviour of an earthen wall and the potential of coupling it with night ventilation to stabilize temperatures and increase indoor comfort. Results obtained in two different rooms, representative of lightweight and heavyweight earthen construction, have been compared.

For further details, see publications below

Partners

CRAterre, ENSAG, Grenoble (France)

Estia, EPFL Innovation Park

LIPID, EPFL

A. Brambilla; J. P. Bonvin; F. Flourentzou; T. Jusselme : Life cycle efficiency ratio: a new performance indicator for a life cycle driven approach to evaluate the potential of ventilative cooling and thermal inertia; Energy and Buildings. 2018. DOI : 10.1016/j.enbuild.2017.12.010.
A. Brambilla; T. Jusselme : Preventing overheating in offices through thermal inertial properties of compressed earth bricks: A study on a real scale prototype; Energy and Buildings. 2017. DOI : 10.1016/j.enbuild.2017.09.070.
A. Brambilla; H. S. Alavi; H. Verma; D. Lalanne; T. Jusselme et al. : “Our Inherent Desire for Control”: a Case Study of Automation’s Impact on the Perception of Comfort; Energy Procedia. 2017. DOI : 10.1016/j.egypro.2017.07.414.
T. Jusselme; A. Brambilla; V. Costa Grisel; S. Cozza; E. Hoxha et al. : Smart Living Building Research Program - Executive Summary. 2017.
A. Poncety; A. Brambilla; E. Hoxha; D. Vuarnoz; S. Cozza et al. : Graphical representation of the smart living building research program ; Building2050 Scientific Workshop, Gruyères, Switzerland, October 2016.
A. Brambilla; E. Hoxha; T. Jusselme; M. Andersen; E. Rey : LCA as key factor for implementation of inertia in a low carbon performance driven design: the case of the smart living building in Fribourg, Switzerland. 2016. Sustainable Built Environment (SBE) Conference, Zurich, Switzerland, June 15-17, 2016.

Funding

State of Fribourg – Switzerland